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Abstract—The geometric multigrid method is an efficient solver for large sparse matrix equations arising in finite element analyses 
and is widely used to solve various electromagnetic problems. However, this method has difficulty in generating hierarchical 
computational grids for complicated geometries. Although using a structured mesh can mitigate this difficulty, it becomes an 
inconvenience for finite element analysis in practical cases. This paper proposes a homogenization technique for the geometric 
multigrid method, which resolves the difficulty in representing various geometries by simple grids. A sample analysis of the 
electrostatic field suggests the promising performance of the proposed method.  
 

Index Terms—Electromagnetic analysis, finite element methods, multigrid method.  
 

I. INTRODUCTION 
inite element (FE) analysis [1] is used widely to solve 
electromagnetic problems. Discretization of the electro-

magnetic equations by the FE method leads to a large sparse 
matrix equation. Because the cost of solving the matrix equa-
tion dominates the total computation cost of FE analysis, it is 
important to develop a fast and efficient matrix solver. 

The geometric multigrid (GMG) method [2], [3] is known 
as an efficient solver for matrix equations arising in FE analy-
sis. Although the GMG method is an O(N) solver that uses 
hierarchical computational grids [2], implementing the GMG 
method involves the tedious tasks of generating and managing 
the hierarchical grids, which is particularly difficult in practi-
cal applications with complicated geometries. Although using 
structured grids [Fig. 1] reduces the difficulty significantly, 
this compromises the flexibility of the FE method to handle 
various geometries.  

In this paper, we present a GMG solver combined with the 
interface homogenization (IH) technique [4]. The IH 
technique compensates for the lack of flexibility of the GMG 
method when using structured grids by allowing the grids to 
be unfitted to the material geometry or interface. When the 
GMG method is combined with the IH technique, the 
prolongation matrix [2] in the GMG algorithm should be 
determined by taking into account the refraction of the field at 
the unfitted interfaces, as described in Section III.  

 
Fig. 1. Unstructured (left) and structured (right) hierarchical grids. 

 

II. BASIC EQUATIONS AND FORMULATION 
As a sample problem, consider the following 2D electrostat-

ic problem:  
−∇ ⋅ ϵ∇𝑉 = 𝜌,   (1) 

where  ϵ, 𝑉, and 𝜌 are the electric permittivity, the electric po-
tential, and the electric charge density, respectively. Discretiz-
ing (1) by the FE method, we obtain the matrix equation 

𝐾𝒂 = 𝒃,   (2) 
where 𝐾, 𝒂, and 𝒃 are the coefficient matrix, the unknown 
vector, and the right-hand side vector, respectively. The com-
ponents of 𝐾 are given by 

[𝐾]!" = 𝜖∇𝑁! ⋅ ∇𝑁!! 𝑑S,   (3) 
where 𝑁! and  𝑁! are first-order shape functions [1]. 

III. MULTIGRID METHOD WITH HOMOGENIZATION 
In this study, it is assumed that the analysis domain is dis-

cretized by the structured grids that are composed of isosceles 
right triangles [Figs. 1 and 3]. The capability of the present 
methodology, however, is not limited to cases using structured 
grids. The standard V-cycle [2] is adopted as the multigrid 
solver for (2).  

When using structured grids, the geometries of the analyzed 
model or of the material interfaces are inevitably unfitted to 
the grids. The IH technique permits this situation without loss 
of accuracy [4]. The coefficient matrices in each level of the 
nested grids are given in the same way as (3). 

Fig. 2 shows a triangular element of a coarse grid that is 
composed of four elements of a finer grid. In Fig. 2, the unfit-
ted material interface, which is represented by a line within the 
element, is given by 𝑙(𝑥, 𝑦) = 𝑝𝑥 + 𝑞𝑦 + 𝑟 = 0. The electric 
permittivity is given respectively by 𝜖!  and 𝜖!  in the sub-
regions 𝑙 > 0 and 𝑙 < 0. The coordinate values of each node 
of the coarser grid are denoted by 𝑥! , 𝑦! , and we write 
𝑙! = 𝑙 𝑥! , 𝑦! . It is assumed without loss of generality that the 
placement of the nodes satisfies 𝑙! ≠ 0 ,   𝑙!𝑙! ≤ 0 , and 
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𝑙!𝑙! ≤ 0. 
In the conventional multigrid method, prolongation [2] onto 

the finer grid from the coarser one is done using the arithmetic 
mean of the values on the coarser grid, for example, 
𝑣!"
! = (𝑣! + 𝑣!)/2. It is expected that this standard prolonga-

tion will not work for the unfitted elements. Hence, we pro-
pose a prolongation taking into account the refraction occur-
ring at the interface of the different media. 

The given values 𝑣!, 𝑣!, and 𝑣! can be regarded as the elec-
tric potential at each node of the coarser grid in Fig. 2. Assum-
ing that the field that is uniform in each medium, the electric 
field can be written in the forms 

𝑬! = 𝑐!𝒏 + 𝑐!𝒕  in  𝑙 𝑥, 𝑦 > 0,   (4) 

𝑬! =
!!
!!
𝑐!𝒏 + 𝑐!𝒕  in  𝑙 𝑥, 𝑦 < 0,   (5) 

where 𝒏  and 𝒕  denote 𝑝 𝑞 !  and −𝑞 𝑝 !  respectively. 
The constants 𝑐! and 𝑐! are obtained below.  

We have following simultaneous equations: 
𝑣! − 𝑣! =

!!
!! ! !!

𝑬! ⋅ 𝚫𝒙𝟏𝟐 +
!!

!! ! !!
𝑬! ⋅ 𝚫𝒙𝟏𝟐,   (6) 

𝑣! − 𝑣! =
!!

!! ! !!
𝑬! ⋅ 𝚫𝒙𝟏𝟑 +

!!
!! ! !!

𝑬! ⋅ 𝚫𝒙𝟏𝟑,   (7) 

where 𝚫𝒙𝟏𝟐 = Δ𝑥!" Δ𝑦!" ! = 𝑥! − 𝑥! 𝑦! − 𝑦! ! and 
𝚫𝒙𝟏𝟑 = Δ𝑥!" Δ𝑦!" ! = 𝑥! − 𝑥! 𝑦! − 𝑦! ! . Solving the 
above equations, we obtain 

𝑐! = 𝐴!"! Δ𝑣!" + 𝐴!"! Δ𝑣!",   (8) 

𝑐! = 𝐴!"! Δ𝑣!" + 𝐴!"! Δ𝑣!",   (9) 
where 

Δ𝑣!" = 𝑣! − 𝑣!, Δ𝑣!" = 𝑣! − 𝑣!,   (10), (11) 

𝐴!"! = !!" !! ! !!
!!"  !!"!!!"!!"

, 𝐴!"! = − !!" !! ! !!
!!"  !!"!!!"!!"

,   (12), (13) 

𝐴!"! = !!" !! ! !!
!!"!!"!!!"  !!"

, 𝐴!"! = − !!" !! ! !!
!!"!!"!!!"  !!"

,   (14), (15) 

𝛼!" = 𝑙! + !!
!!

𝑙! 𝒏 ⋅ 𝚫𝒙𝟏𝟐,   (16) 

𝛼!" = 𝑙! + !!
!!

𝑙! 𝒏 ⋅ 𝚫𝒙𝟏𝟑,   (17) 

𝛽!" = 𝑙! + 𝑙! 𝒕 ⋅ 𝚫𝒙𝟏𝟐,   (18) 

𝛽!" = 𝑙! + 𝑙! 𝒕 ⋅ 𝚫𝒙𝟏𝟑.   (19) 

When 𝑙! ≥ 𝑙! , the prolongation for 𝑣!"
!  is obtained from 

𝑣!"
! − 𝑣! =

!
!
𝑬! ⋅ 𝚫𝒙𝟏𝟐,   (20) 

or 

𝑣!"
! = 1 − !

!
𝒏 ⋅ 𝚫𝒙𝟏𝟐 𝐴!"! + 𝐴!"! − 𝒕 ⋅ 𝚫𝒙𝟏𝟐 𝐴!"! +

𝐴!"! 𝑣! +
!
!
𝒏 ⋅ 𝚫𝒙𝟏𝟐𝐴!"! + 𝒕 ⋅ 𝜟𝒙𝟏𝟐𝐴!"! 𝑣! +

!
!
𝒏 ⋅

𝚫𝒙𝟏𝟐𝐴!"! + 𝒕 ⋅ 𝚫𝒙𝟏𝟐𝐴!"! 𝑣!.    (21) 
When 𝑙! < 𝑙! , the prolongation is obtained from 

𝑣! − 𝑣!"
! = !

!
𝑬! ⋅ 𝚫𝒙𝟏𝟑.   (22) 

We can obtain 𝑣!"
!  in a similar way, and 𝑣!"

!  is given by the 
arithmetic average of 𝑣! and 𝑣!. 

When triangular grids are used, each node to be interpolated 
belongs to two elements of the coarser grid. Because (21) (or 
(22)) with respect to these two elements may lead to different 
values, we adopt the arithmetic average of those values. 

 
Fig. 2. Unfitted element of a coarse grid. 

 
Fig. 3. Test model and an example of a structured mesh. 

IV. NUMERICAL RESULT 
Fig. 3 shows the test problem, in which the analysis domain 

is discretized by 128 × 128 × 2 triangles. The Gauss–Seidel 
method is used as the smoother [2] and the LU decomposition 
is for the coarsest grid, which is the fifth coarse grid (that is, 
the total number of grids is six). 

The Dirichlet conditions are imposed at the boundaries 
𝑦 = 1.0  m  and 𝑦 = 0.0  m  (10 and 1 V, respectively). The 
GMG iteration is terminated when the relative residual norm 
becomes less than 10!!. In model 1, the entire analysis field is 
a vacuum. In model 2, the relative permittivity is set to 10 for 
𝑙 > 0 and to 1 for 𝑙 ≤ 0. Note that unfitted elements arise in 
model 2. 

Table 1 shows the number of iterations required for 
convergence of the GMG method. Convergence of the GMG 
method with the conventional prolongation becomes slow 
when unfitted elements arise. In contrast, using the proposed 
prolongation maintains the rapid convergence of the GMG 
method, even with unfitted elements.  

The GMG method presented in this study is both flexible at 
handling various geometries and converges rapidly. More 
practical applications will be reported in the full paper.  
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TABLE I 
NUMERICAL RESULT: NUMBER OF ITERATIONS. 

εr 
Conventional 

method 
Proposed 
method 

1 10 11 
10 28 11 

 


